YES 88.616 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule List
  ((union :: [Ratio Int ->  [Ratio Int ->  [Ratio Int]) :: [Ratio Int ->  [Ratio Int ->  [Ratio Int])

module List where
  import qualified Maybe
import qualified Prelude

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ys if x `eq` y then ys else y : deleteBy eq x ys

  elem_by :: (a  ->  a  ->  Bool ->  a  ->  [a ->  Bool
elem_by _ _ [] False
elem_by eq y (x : xsx `eq` y || elem_by eq y xs

  nubBy :: (a  ->  a  ->  Bool ->  [a ->  [a]
nubBy eq l 
nubBy' l [] where 
nubBy' [] _ []
nubBy' (y : ysxs 
 | elem_by eq y xs = 
nubBy' ys xs
 | otherwise = 
y : nubBy' ys (y : xs)

  union :: Eq a => [a ->  [a ->  [a]
union unionBy (==)

  unionBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
unionBy eq xs ys xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs


module Maybe where
  import qualified List
import qualified Prelude



If Reductions:
The following If expression
if eq x y then ys else y : deleteBy eq x ys

is transformed to
deleteBy0 ys y eq x True = ys
deleteBy0 ys y eq x False = y : deleteBy eq x ys



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule List
  ((union :: [Ratio Int ->  [Ratio Int ->  [Ratio Int]) :: [Ratio Int ->  [Ratio Int ->  [Ratio Int])

module List where
  import qualified Maybe
import qualified Prelude

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys

  elem_by :: (a  ->  a  ->  Bool ->  a  ->  [a ->  Bool
elem_by _ _ [] False
elem_by eq y (x : xsx `eq` y || elem_by eq y xs

  nubBy :: (a  ->  a  ->  Bool ->  [a ->  [a]
nubBy eq l 
nubBy' l [] where 
nubBy' [] _ []
nubBy' (y : ysxs 
 | elem_by eq y xs = 
nubBy' ys xs
 | otherwise = 
y : nubBy' ys (y : xs)

  union :: Eq a => [a ->  [a ->  [a]
union unionBy (==)

  unionBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
unionBy eq xs ys xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule List
  ((union :: [Ratio Int ->  [Ratio Int ->  [Ratio Int]) :: [Ratio Int ->  [Ratio Int ->  [Ratio Int])

module List where
  import qualified Maybe
import qualified Prelude

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys

  elem_by :: (a  ->  a  ->  Bool ->  a  ->  [a ->  Bool
elem_by vz wu [] False
elem_by eq y (x : xsx `eq` y || elem_by eq y xs

  nubBy :: (a  ->  a  ->  Bool ->  [a ->  [a]
nubBy eq l 
nubBy' l [] where 
nubBy' [] vy []
nubBy' (y : ysxs 
 | elem_by eq y xs = 
nubBy' ys xs
 | otherwise = 
y : nubBy' ys (y : xs)

  union :: Eq a => [a ->  [a ->  [a]
union unionBy (==)

  unionBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
unionBy eq xs ys xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
nubBy' [] vy = []
nubBy' (y : ysxs
 | elem_by eq y xs
 = nubBy' ys xs
 | otherwise
 = y : nubBy' ys (y : xs)

is transformed to
nubBy' [] vy = nubBy'3 [] vy
nubBy' (y : ysxs = nubBy'2 (y : ysxs

nubBy'0 y ys xs True = y : nubBy' ys (y : xs)

nubBy'1 y ys xs True = nubBy' ys xs
nubBy'1 y ys xs False = nubBy'0 y ys xs otherwise

nubBy'2 (y : ysxs = nubBy'1 y ys xs (elem_by eq y xs)

nubBy'3 [] vy = []
nubBy'3 xv xw = nubBy'2 xv xw

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ LetRed

mainModule List
  ((union :: [Ratio Int ->  [Ratio Int ->  [Ratio Int]) :: [Ratio Int ->  [Ratio Int ->  [Ratio Int])

module List where
  import qualified Maybe
import qualified Prelude

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys

  elem_by :: (a  ->  a  ->  Bool ->  a  ->  [a ->  Bool
elem_by vz wu [] False
elem_by eq y (x : xsx `eq` y || elem_by eq y xs

  nubBy :: (a  ->  a  ->  Bool ->  [a ->  [a]
nubBy eq l 
nubBy' l [] where 
nubBy' [] vy nubBy'3 [] vy
nubBy' (y : ysxs nubBy'2 (y : ys) xs
nubBy'0 y ys xs True y : nubBy' ys (y : xs)
nubBy'1 y ys xs True nubBy' ys xs
nubBy'1 y ys xs False nubBy'0 y ys xs otherwise
nubBy'2 (y : ysxs nubBy'1 y ys xs (elem_by eq y xs)
nubBy'3 [] vy []
nubBy'3 xv xw nubBy'2 xv xw

  union :: Eq a => [a ->  [a ->  [a]
union unionBy (==)

  unionBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
unionBy eq xs ys xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs


module Maybe where
  import qualified List
import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
nubBy' l []
where 
nubBy' [] vy = nubBy'3 [] vy
nubBy' (y : ysxs = nubBy'2 (y : ysxs
nubBy'0 y ys xs True = y : nubBy' ys (y : xs)
nubBy'1 y ys xs True = nubBy' ys xs
nubBy'1 y ys xs False = nubBy'0 y ys xs otherwise
nubBy'2 (y : ysxs = nubBy'1 y ys xs (elem_by eq y xs)
nubBy'3 [] vy = []
nubBy'3 xv xw = nubBy'2 xv xw

are unpacked to the following functions on top level
nubByNubBy' xx [] vy = nubByNubBy'3 xx [] vy
nubByNubBy' xx (y : ysxs = nubByNubBy'2 xx (y : ysxs

nubByNubBy'3 xx [] vy = []
nubByNubBy'3 xx xv xw = nubByNubBy'2 xx xv xw

nubByNubBy'0 xx y ys xs True = y : nubByNubBy' xx ys (y : xs)

nubByNubBy'2 xx (y : ysxs = nubByNubBy'1 xx y ys xs (elem_by xx y xs)

nubByNubBy'1 xx y ys xs True = nubByNubBy' xx ys xs
nubByNubBy'1 xx y ys xs False = nubByNubBy'0 xx y ys xs otherwise



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
HASKELL
                  ↳ Narrow

mainModule List
  (union :: [Ratio Int ->  [Ratio Int ->  [Ratio Int])

module List where
  import qualified Maybe
import qualified Prelude

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys

  elem_by :: (a  ->  a  ->  Bool ->  a  ->  [a ->  Bool
elem_by vz wu [] False
elem_by eq y (x : xsx `eq` y || elem_by eq y xs

  nubBy :: (a  ->  a  ->  Bool ->  [a ->  [a]
nubBy eq l nubByNubBy' eq l []

  
nubByNubBy' xx [] vy nubByNubBy'3 xx [] vy
nubByNubBy' xx (y : ysxs nubByNubBy'2 xx (y : ys) xs

  
nubByNubBy'0 xx y ys xs True y : nubByNubBy' xx ys (y : xs)

  
nubByNubBy'1 xx y ys xs True nubByNubBy' xx ys xs
nubByNubBy'1 xx y ys xs False nubByNubBy'0 xx y ys xs otherwise

  
nubByNubBy'2 xx (y : ysxs nubByNubBy'1 xx y ys xs (elem_by xx y xs)

  
nubByNubBy'3 xx [] vy []
nubByNubBy'3 xx xv xw nubByNubBy'2 xx xv xw

  union :: Eq a => [a ->  [a ->  [a]
union unionBy (==)

  unionBy :: (a  ->  a  ->  Bool ->  [a ->  [a ->  [a]
unionBy eq xs ys xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(xy10000), Succ(xy90000)) → new_primEqNat(xy10000, xy90000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_esEs(:%(xy100, xy101), :%(xy900, xy901), ba) → new_asAs(new_esEs0(xy100, xy900, ba), xy101, xy901, ba)
new_asAs(True, xy29, xy30, app(ty_Ratio, bb)) → new_esEs(xy29, xy30, bb)

The TRS R consists of the following rules:

new_primEqNat0(Zero, Succ(xy90000)) → False
new_primEqNat0(Succ(xy10000), Zero) → False
new_esEs1(Neg(Succ(xy1000)), Neg(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)
new_esEs0(xy100, xy900, ty_Integer) → new_esEs2(xy100, xy900)
new_esEs1(Pos(Zero), Pos(Zero)) → True
new_esEs2(xy10, xy90) → error([])
new_primEqNat0(Zero, Zero) → True
new_primEqNat0(Succ(xy10000), Succ(xy90000)) → new_primEqNat0(xy10000, xy90000)
new_esEs1(Neg(Succ(xy1000)), Pos(xy900)) → False
new_esEs1(Pos(Succ(xy1000)), Neg(xy900)) → False
new_esEs1(Neg(Succ(xy1000)), Neg(Zero)) → False
new_esEs1(Neg(Zero), Neg(Succ(xy9000))) → False
new_esEs1(Pos(Zero), Neg(Succ(xy9000))) → False
new_esEs1(Neg(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Succ(xy1000)), Pos(Zero)) → False
new_esEs1(Neg(Zero), Neg(Zero)) → True
new_esEs1(Pos(Zero), Neg(Zero)) → True
new_esEs1(Neg(Zero), Pos(Zero)) → True
new_esEs0(xy100, xy900, ty_Int) → new_esEs1(xy100, xy900)
new_esEs1(Pos(Succ(xy1000)), Pos(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)

The set Q consists of the following terms:

new_esEs0(x0, x1, ty_Integer)
new_esEs1(Neg(Succ(x0)), Neg(Succ(x1)))
new_primEqNat0(Zero, Zero)
new_primEqNat0(Succ(x0), Zero)
new_esEs1(Pos(Succ(x0)), Neg(x1))
new_esEs1(Neg(Succ(x0)), Pos(x1))
new_esEs1(Pos(Zero), Pos(Succ(x0)))
new_primEqNat0(Zero, Succ(x0))
new_esEs1(Neg(Zero), Neg(Succ(x0)))
new_esEs1(Neg(Zero), Neg(Zero))
new_esEs1(Pos(Succ(x0)), Pos(Zero))
new_esEs1(Neg(Succ(x0)), Neg(Zero))
new_primEqNat0(Succ(x0), Succ(x1))
new_esEs2(x0, x1)
new_esEs1(Pos(Zero), Pos(Zero))
new_esEs1(Pos(Zero), Neg(Succ(x0)))
new_esEs1(Neg(Zero), Pos(Succ(x0)))
new_esEs1(Pos(Succ(x0)), Pos(Succ(x1)))
new_esEs1(Pos(Zero), Neg(Zero))
new_esEs1(Neg(Zero), Pos(Zero))
new_esEs0(x0, x1, ty_Int)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_nubByNubBy'(:(xy8270, xy8271), xy828, xy829, bb) → new_nubByNubBy'1(xy8270, xy8271, xy828, xy829, new_esEs4(xy828, xy8270, bb), xy829, bb)
new_nubByNubBy'1(xy919, xy920, xy921, xy922, False, :(xy9240, xy9241), ba) → new_nubByNubBy'1(xy919, xy920, xy921, xy922, new_esEs3(xy9240, xy919, ba), xy9241, ba)
new_nubByNubBy'1(xy919, xy920, xy921, xy922, False, [], ba) → new_nubByNubBy'(xy920, xy919, :(xy921, xy922), ba)
new_nubByNubBy'1(xy919, xy920, xy921, xy922, True, xy924, ba) → new_nubByNubBy'(xy920, xy921, xy922, ba)

The TRS R consists of the following rules:

new_asAs0(False, xy29, xy30, ce) → False
new_asAs0(True, xy29, xy30, ty_Ordering) → new_esEs6(xy29, xy30)
new_asAs0(True, xy29, xy30, ty_@0) → new_esEs12(xy29, xy30)
new_esEs4(xy828, xy8270, ty_Float) → new_esEs8(xy828, xy8270)
new_asAs0(True, xy29, xy30, ty_Int) → new_esEs1(xy29, xy30)
new_esEs3(xy9240, xy919, ty_Ordering) → new_esEs6(xy9240, xy919)
new_primEqNat0(Zero, Zero) → True
new_esEs16(xy10, xy90) → error([])
new_esEs1(Pos(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Succ(xy1000)), Pos(Zero)) → False
new_esEs3(xy9240, xy919, ty_@0) → new_esEs12(xy9240, xy919)
new_esEs13(xy10, xy90) → error([])
new_esEs4(xy828, xy8270, ty_Bool) → new_esEs16(xy828, xy8270)
new_esEs3(xy9240, xy919, app(ty_Maybe, gd)) → new_esEs14(xy9240, xy919, gd)
new_esEs3(xy9240, xy919, ty_Integer) → new_esEs2(xy9240, xy919)
new_esEs12(xy10, xy90) → error([])
new_asAs0(True, xy29, xy30, app(ty_[], dh)) → new_esEs15(xy29, xy30, dh)
new_primEqNat0(Zero, Succ(xy90000)) → False
new_primEqNat0(Succ(xy10000), Zero) → False
new_esEs1(Neg(Succ(xy1000)), Neg(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)
new_asAs0(True, xy29, xy30, ty_Char) → new_esEs13(xy29, xy30)
new_esEs3(xy9240, xy919, app(ty_[], ge)) → new_esEs15(xy9240, xy919, ge)
new_esEs4(xy828, xy8270, app(app(ty_@2, bg), bh)) → new_esEs10(xy828, xy8270, bg, bh)
new_esEs4(xy828, xy8270, app(ty_Ratio, bf)) → new_esEs9(xy828, xy8270, bf)
new_esEs14(xy10, xy90, eb) → error([])
new_esEs4(xy828, xy8270, app(app(ty_Either, ca), cb)) → new_esEs11(xy828, xy8270, ca, cb)
new_asAs0(True, xy29, xy30, ty_Bool) → new_esEs16(xy29, xy30)
new_esEs3(xy9240, xy919, ty_Float) → new_esEs8(xy9240, xy919)
new_esEs4(xy828, xy8270, ty_Double) → new_esEs5(xy828, xy8270)
new_esEs4(xy828, xy8270, ty_@0) → new_esEs12(xy828, xy8270)
new_esEs11(xy10, xy90, ef, eg) → error([])
new_esEs10(xy10, xy90, fa, fb) → error([])
new_esEs5(xy10, xy90) → error([])
new_esEs2(xy10, xy90) → error([])
new_asAs0(True, xy29, xy30, app(ty_Ratio, db)) → new_esEs9(xy29, xy30, db)
new_esEs3(xy9240, xy919, ty_Char) → new_esEs13(xy9240, xy919)
new_esEs4(xy828, xy8270, ty_Char) → new_esEs13(xy828, xy8270)
new_esEs3(xy9240, xy919, ty_Int) → new_esEs1(xy9240, xy919)
new_esEs3(xy9240, xy919, app(app(ty_@2, fh), ga)) → new_esEs10(xy9240, xy919, fh, ga)
new_asAs0(True, xy29, xy30, app(ty_Maybe, dg)) → new_esEs14(xy29, xy30, dg)
new_primEqNat0(Succ(xy10000), Succ(xy90000)) → new_primEqNat0(xy10000, xy90000)
new_asAs0(True, xy29, xy30, ty_Double) → new_esEs5(xy29, xy30)
new_esEs4(xy828, xy8270, ty_Integer) → new_esEs2(xy828, xy8270)
new_asAs0(True, xy29, xy30, ty_Float) → new_esEs8(xy29, xy30)
new_esEs1(Neg(Succ(xy1000)), Pos(xy900)) → False
new_esEs1(Pos(Succ(xy1000)), Neg(xy900)) → False
new_esEs4(xy828, xy8270, app(ty_Maybe, cc)) → new_esEs14(xy828, xy8270, cc)
new_esEs1(Pos(Zero), Neg(Succ(xy9000))) → False
new_esEs1(Neg(Zero), Pos(Succ(xy9000))) → False
new_asAs0(True, xy29, xy30, app(app(ty_Either, de), df)) → new_esEs11(xy29, xy30, de, df)
new_esEs4(xy828, xy8270, app(app(app(ty_@3, bc), bd), be)) → new_esEs7(xy828, xy8270, bc, bd, be)
new_asAs0(True, xy29, xy30, app(app(app(ty_@3, cf), cg), da)) → new_esEs7(xy29, xy30, cf, cg, da)
new_esEs4(xy828, xy8270, app(ty_[], cd)) → new_esEs15(xy828, xy8270, cd)
new_esEs1(Neg(Zero), Neg(Zero)) → True
new_esEs1(Pos(Zero), Neg(Zero)) → True
new_asAs0(True, xy29, xy30, ty_Integer) → new_esEs2(xy29, xy30)
new_esEs1(Neg(Zero), Pos(Zero)) → True
new_esEs0(xy100, xy900, ty_Int) → new_esEs1(xy100, xy900)
new_esEs8(xy10, xy90) → error([])
new_esEs3(xy9240, xy919, app(app(app(ty_@3, fc), fd), ff)) → new_esEs7(xy9240, xy919, fc, fd, ff)
new_asAs0(True, xy29, xy30, app(app(ty_@2, dc), dd)) → new_esEs10(xy29, xy30, dc, dd)
new_esEs4(xy828, xy8270, ty_Ordering) → new_esEs6(xy828, xy8270)
new_esEs0(xy100, xy900, ty_Integer) → new_esEs2(xy100, xy900)
new_esEs1(Pos(Zero), Pos(Zero)) → True
new_esEs3(xy9240, xy919, app(app(ty_Either, gb), gc)) → new_esEs11(xy9240, xy919, gb, gc)
new_esEs3(xy9240, xy919, ty_Double) → new_esEs5(xy9240, xy919)
new_esEs3(xy9240, xy919, ty_Bool) → new_esEs16(xy9240, xy919)
new_esEs9(:%(xy100, xy101), :%(xy900, xy901), eh) → new_asAs0(new_esEs0(xy100, xy900, eh), xy101, xy901, eh)
new_esEs1(Neg(Succ(xy1000)), Neg(Zero)) → False
new_esEs1(Neg(Zero), Neg(Succ(xy9000))) → False
new_esEs4(xy828, xy8270, ty_Int) → new_esEs1(xy828, xy8270)
new_esEs3(xy9240, xy919, app(ty_Ratio, fg)) → new_esEs9(xy9240, xy919, fg)
new_esEs6(xy10, xy90) → error([])
new_esEs7(xy10, xy90, ec, ed, ee) → error([])
new_esEs15(xy10, xy90, ea) → error([])
new_esEs1(Pos(Succ(xy1000)), Pos(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)

The set Q consists of the following terms:

new_asAs0(True, x0, x1, app(ty_Maybe, x2))
new_esEs15(x0, x1, x2)
new_esEs1(Neg(Succ(x0)), Neg(Succ(x1)))
new_esEs16(x0, x1)
new_esEs1(Pos(Succ(x0)), Neg(x1))
new_esEs1(Neg(Succ(x0)), Pos(x1))
new_esEs4(x0, x1, ty_Int)
new_esEs3(x0, x1, ty_Integer)
new_esEs1(Pos(Zero), Pos(Succ(x0)))
new_asAs0(True, x0, x1, ty_Float)
new_asAs0(True, x0, x1, app(ty_[], x2))
new_asAs0(True, x0, x1, app(app(ty_@2, x2), x3))
new_esEs4(x0, x1, ty_@0)
new_esEs1(Neg(Succ(x0)), Neg(Zero))
new_asAs0(False, x0, x1, x2)
new_esEs6(x0, x1)
new_esEs3(x0, x1, ty_Ordering)
new_esEs4(x0, x1, app(ty_Maybe, x2))
new_esEs1(Pos(Zero), Pos(Zero))
new_esEs3(x0, x1, ty_@0)
new_asAs0(True, x0, x1, app(app(ty_Either, x2), x3))
new_esEs4(x0, x1, app(ty_[], x2))
new_esEs3(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs14(x0, x1, x2)
new_esEs1(Neg(Zero), Neg(Succ(x0)))
new_esEs3(x0, x1, ty_Float)
new_esEs13(x0, x1)
new_esEs1(Neg(Zero), Neg(Zero))
new_esEs3(x0, x1, ty_Bool)
new_esEs4(x0, x1, ty_Bool)
new_esEs5(x0, x1)
new_esEs9(:%(x0, x1), :%(x2, x3), x4)
new_esEs4(x0, x1, app(ty_Ratio, x2))
new_esEs12(x0, x1)
new_esEs4(x0, x1, ty_Ordering)
new_esEs11(x0, x1, x2, x3)
new_esEs2(x0, x1)
new_asAs0(True, x0, x1, app(ty_Ratio, x2))
new_asAs0(True, x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs0(x0, x1, ty_Int)
new_asAs0(True, x0, x1, ty_Int)
new_asAs0(True, x0, x1, ty_Ordering)
new_asAs0(True, x0, x1, ty_Integer)
new_esEs10(x0, x1, x2, x3)
new_esEs7(x0, x1, x2, x3, x4)
new_primEqNat0(Zero, Succ(x0))
new_asAs0(True, x0, x1, ty_Double)
new_esEs4(x0, x1, ty_Integer)
new_esEs8(x0, x1)
new_esEs3(x0, x1, app(ty_Maybe, x2))
new_asAs0(True, x0, x1, ty_@0)
new_esEs4(x0, x1, app(app(ty_@2, x2), x3))
new_esEs3(x0, x1, app(app(ty_Either, x2), x3))
new_asAs0(True, x0, x1, ty_Bool)
new_esEs3(x0, x1, app(ty_Ratio, x2))
new_esEs1(Neg(Zero), Pos(Succ(x0)))
new_esEs1(Pos(Zero), Neg(Succ(x0)))
new_esEs1(Pos(Succ(x0)), Pos(Succ(x1)))
new_esEs3(x0, x1, ty_Int)
new_esEs0(x0, x1, ty_Integer)
new_primEqNat0(Zero, Zero)
new_esEs3(x0, x1, ty_Double)
new_esEs4(x0, x1, ty_Float)
new_primEqNat0(Succ(x0), Zero)
new_esEs4(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs1(Pos(Succ(x0)), Pos(Zero))
new_esEs3(x0, x1, ty_Char)
new_esEs4(x0, x1, app(app(ty_Either, x2), x3))
new_esEs4(x0, x1, ty_Char)
new_primEqNat0(Succ(x0), Succ(x1))
new_esEs3(x0, x1, app(ty_[], x2))
new_esEs1(Pos(Zero), Neg(Zero))
new_esEs1(Neg(Zero), Pos(Zero))
new_esEs4(x0, x1, ty_Double)
new_esEs3(x0, x1, app(app(ty_@2, x2), x3))
new_asAs0(True, x0, x1, ty_Char)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy(xy10, :(xy90, xy91), bb) → new_deleteBy0(xy91, xy90, xy10, new_esEs17(xy10, xy90, bb), bb)
new_deleteBy0(xy17, xy18, xy19, False, ba) → new_deleteBy(xy19, xy17, ba)

The TRS R consists of the following rules:

new_asAs0(False, xy29, xy30, bc) → False
new_asAs0(True, xy29, xy30, ty_Ordering) → new_esEs6(xy29, xy30)
new_esEs17(xy10, xy90, app(app(ty_Either, dg), dh)) → new_esEs11(xy10, xy90, dg, dh)
new_asAs0(True, xy29, xy30, ty_@0) → new_esEs12(xy29, xy30)
new_asAs0(True, xy29, xy30, ty_Int) → new_esEs1(xy29, xy30)
new_primEqNat0(Zero, Zero) → True
new_esEs17(xy10, xy90, ty_Char) → new_esEs13(xy10, xy90)
new_esEs16(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_Integer) → new_esEs2(xy10, xy90)
new_esEs1(Pos(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Succ(xy1000)), Pos(Zero)) → False
new_esEs13(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_@0) → new_esEs12(xy10, xy90)
new_esEs17(xy10, xy90, ty_Float) → new_esEs8(xy10, xy90)
new_esEs17(xy10, xy90, app(app(app(ty_@3, da), db), dc)) → new_esEs7(xy10, xy90, da, db, dc)
new_esEs12(xy10, xy90) → error([])
new_primEqNat0(Zero, Succ(xy90000)) → False
new_primEqNat0(Succ(xy10000), Zero) → False
new_asAs0(True, xy29, xy30, app(ty_[], ce)) → new_esEs15(xy29, xy30, ce)
new_esEs1(Neg(Succ(xy1000)), Neg(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)
new_asAs0(True, xy29, xy30, ty_Char) → new_esEs13(xy29, xy30)
new_esEs17(xy10, xy90, app(ty_Maybe, cg)) → new_esEs14(xy10, xy90, cg)
new_esEs14(xy10, xy90, cg) → error([])
new_asAs0(True, xy29, xy30, ty_Bool) → new_esEs16(xy29, xy30)
new_esEs17(xy10, xy90, ty_Int) → new_esEs1(xy10, xy90)
new_esEs17(xy10, xy90, app(ty_Ratio, dd)) → new_esEs9(xy10, xy90, dd)
new_esEs11(xy10, xy90, dg, dh) → error([])
new_esEs10(xy10, xy90, de, df) → error([])
new_esEs5(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_Double) → new_esEs5(xy10, xy90)
new_asAs0(True, xy29, xy30, app(ty_Ratio, bg)) → new_esEs9(xy29, xy30, bg)
new_esEs2(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_Ordering) → new_esEs6(xy10, xy90)
new_primEqNat0(Succ(xy10000), Succ(xy90000)) → new_primEqNat0(xy10000, xy90000)
new_asAs0(True, xy29, xy30, app(ty_Maybe, cd)) → new_esEs14(xy29, xy30, cd)
new_asAs0(True, xy29, xy30, ty_Double) → new_esEs5(xy29, xy30)
new_asAs0(True, xy29, xy30, ty_Float) → new_esEs8(xy29, xy30)
new_esEs1(Neg(Succ(xy1000)), Pos(xy900)) → False
new_esEs1(Pos(Succ(xy1000)), Neg(xy900)) → False
new_esEs1(Neg(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Zero), Neg(Succ(xy9000))) → False
new_asAs0(True, xy29, xy30, app(app(ty_Either, cb), cc)) → new_esEs11(xy29, xy30, cb, cc)
new_asAs0(True, xy29, xy30, app(app(app(ty_@3, bd), be), bf)) → new_esEs7(xy29, xy30, bd, be, bf)
new_esEs1(Neg(Zero), Neg(Zero)) → True
new_esEs1(Neg(Zero), Pos(Zero)) → True
new_esEs1(Pos(Zero), Neg(Zero)) → True
new_asAs0(True, xy29, xy30, ty_Integer) → new_esEs2(xy29, xy30)
new_esEs17(xy10, xy90, app(ty_[], cf)) → new_esEs15(xy10, xy90, cf)
new_esEs0(xy100, xy900, ty_Int) → new_esEs1(xy100, xy900)
new_esEs8(xy10, xy90) → error([])
new_asAs0(True, xy29, xy30, app(app(ty_@2, bh), ca)) → new_esEs10(xy29, xy30, bh, ca)
new_esEs0(xy100, xy900, ty_Integer) → new_esEs2(xy100, xy900)
new_esEs1(Pos(Zero), Pos(Zero)) → True
new_esEs17(xy10, xy90, ty_Bool) → new_esEs16(xy10, xy90)
new_esEs9(:%(xy100, xy101), :%(xy900, xy901), dd) → new_asAs0(new_esEs0(xy100, xy900, dd), xy101, xy901, dd)
new_esEs1(Neg(Zero), Neg(Succ(xy9000))) → False
new_esEs1(Neg(Succ(xy1000)), Neg(Zero)) → False
new_esEs7(xy10, xy90, da, db, dc) → error([])
new_esEs6(xy10, xy90) → error([])
new_esEs15(xy10, xy90, cf) → error([])
new_esEs17(xy10, xy90, app(app(ty_@2, de), df)) → new_esEs10(xy10, xy90, de, df)
new_esEs1(Pos(Succ(xy1000)), Pos(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)

The set Q consists of the following terms:

new_esEs1(Neg(Succ(x0)), Neg(Succ(x1)))
new_esEs16(x0, x1)
new_esEs17(x0, x1, app(app(ty_@2, x2), x3))
new_esEs1(Pos(Succ(x0)), Neg(x1))
new_esEs1(Neg(Succ(x0)), Pos(x1))
new_esEs1(Pos(Zero), Pos(Succ(x0)))
new_asAs0(True, x0, x1, ty_Float)
new_esEs1(Neg(Succ(x0)), Neg(Zero))
new_esEs6(x0, x1)
new_asAs0(False, x0, x1, x2)
new_asAs0(True, x0, x1, app(ty_Maybe, x2))
new_esEs1(Pos(Zero), Pos(Zero))
new_asAs0(True, x0, x1, app(ty_[], x2))
new_esEs17(x0, x1, app(ty_Ratio, x2))
new_esEs1(Neg(Zero), Neg(Succ(x0)))
new_esEs13(x0, x1)
new_esEs1(Neg(Zero), Neg(Zero))
new_esEs15(x0, x1, x2)
new_asAs0(True, x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs11(x0, x1, x2, x3)
new_esEs9(:%(x0, x1), :%(x2, x3), x4)
new_esEs5(x0, x1)
new_esEs12(x0, x1)
new_esEs2(x0, x1)
new_esEs7(x0, x1, x2, x3, x4)
new_esEs17(x0, x1, ty_Bool)
new_esEs17(x0, x1, ty_@0)
new_esEs0(x0, x1, ty_Int)
new_esEs17(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_asAs0(True, x0, x1, ty_Int)
new_asAs0(True, x0, x1, app(app(ty_@2, x2), x3))
new_asAs0(True, x0, x1, ty_Ordering)
new_esEs17(x0, x1, app(ty_[], x2))
new_esEs14(x0, x1, x2)
new_asAs0(True, x0, x1, ty_Integer)
new_esEs17(x0, x1, ty_Integer)
new_primEqNat0(Zero, Succ(x0))
new_asAs0(True, x0, x1, ty_Double)
new_esEs8(x0, x1)
new_esEs17(x0, x1, app(app(ty_Either, x2), x3))
new_asAs0(True, x0, x1, ty_@0)
new_esEs17(x0, x1, ty_Char)
new_esEs17(x0, x1, app(ty_Maybe, x2))
new_asAs0(True, x0, x1, app(app(ty_Either, x2), x3))
new_esEs10(x0, x1, x2, x3)
new_asAs0(True, x0, x1, ty_Bool)
new_asAs0(True, x0, x1, app(ty_Ratio, x2))
new_esEs1(Pos(Zero), Neg(Succ(x0)))
new_esEs1(Neg(Zero), Pos(Succ(x0)))
new_esEs1(Pos(Succ(x0)), Pos(Succ(x1)))
new_esEs17(x0, x1, ty_Ordering)
new_esEs0(x0, x1, ty_Integer)
new_primEqNat0(Zero, Zero)
new_primEqNat0(Succ(x0), Zero)
new_esEs17(x0, x1, ty_Double)
new_esEs1(Pos(Succ(x0)), Pos(Zero))
new_esEs17(x0, x1, ty_Int)
new_primEqNat0(Succ(x0), Succ(x1))
new_esEs17(x0, x1, ty_Float)
new_esEs1(Pos(Zero), Neg(Zero))
new_esEs1(Neg(Zero), Pos(Zero))
new_asAs0(True, x0, x1, ty_Char)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldl(xy9, xy10, :(xy110, xy111), ba) → new_foldl(new_flip(xy9, xy10, ba), xy110, xy111, ba)

The TRS R consists of the following rules:

new_asAs0(False, xy29, xy30, bb) → False
new_asAs0(True, xy29, xy30, ty_Ordering) → new_esEs6(xy29, xy30)
new_esEs17(xy10, xy90, app(app(ty_Either, dg), dh)) → new_esEs11(xy10, xy90, dg, dh)
new_asAs0(True, xy29, xy30, ty_@0) → new_esEs12(xy29, xy30)
new_asAs0(True, xy29, xy30, ty_Int) → new_esEs1(xy29, xy30)
new_primEqNat0(Zero, Zero) → True
new_esEs17(xy10, xy90, ty_Char) → new_esEs13(xy10, xy90)
new_esEs16(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_Integer) → new_esEs2(xy10, xy90)
new_esEs1(Pos(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Succ(xy1000)), Pos(Zero)) → False
new_esEs13(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_@0) → new_esEs12(xy10, xy90)
new_deleteBy1(xy10, [], ba) → []
new_esEs17(xy10, xy90, ty_Float) → new_esEs8(xy10, xy90)
new_esEs17(xy10, xy90, app(app(app(ty_@3, da), db), dc)) → new_esEs7(xy10, xy90, da, db, dc)
new_esEs12(xy10, xy90) → error([])
new_primEqNat0(Zero, Succ(xy90000)) → False
new_primEqNat0(Succ(xy10000), Zero) → False
new_asAs0(True, xy29, xy30, app(ty_[], cd)) → new_esEs15(xy29, xy30, cd)
new_esEs1(Neg(Succ(xy1000)), Neg(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)
new_asAs0(True, xy29, xy30, ty_Char) → new_esEs13(xy29, xy30)
new_deleteBy00(xy17, xy18, xy19, False, cf) → :(xy18, new_deleteBy1(xy19, xy17, cf))
new_esEs17(xy10, xy90, app(ty_Maybe, cg)) → new_esEs14(xy10, xy90, cg)
new_esEs14(xy10, xy90, cg) → error([])
new_asAs0(True, xy29, xy30, ty_Bool) → new_esEs16(xy29, xy30)
new_esEs17(xy10, xy90, ty_Int) → new_esEs1(xy10, xy90)
new_esEs17(xy10, xy90, app(ty_Ratio, dd)) → new_esEs9(xy10, xy90, dd)
new_esEs11(xy10, xy90, dg, dh) → error([])
new_esEs10(xy10, xy90, de, df) → error([])
new_esEs5(xy10, xy90) → error([])
new_esEs17(xy10, xy90, ty_Double) → new_esEs5(xy10, xy90)
new_esEs2(xy10, xy90) → error([])
new_asAs0(True, xy29, xy30, app(ty_Ratio, bf)) → new_esEs9(xy29, xy30, bf)
new_deleteBy00(xy17, xy18, xy19, True, cf) → xy17
new_esEs17(xy10, xy90, ty_Ordering) → new_esEs6(xy10, xy90)
new_primEqNat0(Succ(xy10000), Succ(xy90000)) → new_primEqNat0(xy10000, xy90000)
new_asAs0(True, xy29, xy30, app(ty_Maybe, cc)) → new_esEs14(xy29, xy30, cc)
new_asAs0(True, xy29, xy30, ty_Double) → new_esEs5(xy29, xy30)
new_asAs0(True, xy29, xy30, ty_Float) → new_esEs8(xy29, xy30)
new_esEs1(Neg(Succ(xy1000)), Pos(xy900)) → False
new_esEs1(Pos(Succ(xy1000)), Neg(xy900)) → False
new_deleteBy1(xy10, :(xy90, xy91), ba) → new_deleteBy00(xy91, xy90, xy10, new_esEs17(xy10, xy90, ba), ba)
new_esEs1(Neg(Zero), Pos(Succ(xy9000))) → False
new_esEs1(Pos(Zero), Neg(Succ(xy9000))) → False
new_asAs0(True, xy29, xy30, app(app(ty_Either, ca), cb)) → new_esEs11(xy29, xy30, ca, cb)
new_asAs0(True, xy29, xy30, app(app(app(ty_@3, bc), bd), be)) → new_esEs7(xy29, xy30, bc, bd, be)
new_esEs1(Neg(Zero), Neg(Zero)) → True
new_esEs1(Neg(Zero), Pos(Zero)) → True
new_esEs1(Pos(Zero), Neg(Zero)) → True
new_asAs0(True, xy29, xy30, ty_Integer) → new_esEs2(xy29, xy30)
new_esEs17(xy10, xy90, app(ty_[], ce)) → new_esEs15(xy10, xy90, ce)
new_esEs0(xy100, xy900, ty_Int) → new_esEs1(xy100, xy900)
new_esEs8(xy10, xy90) → error([])
new_asAs0(True, xy29, xy30, app(app(ty_@2, bg), bh)) → new_esEs10(xy29, xy30, bg, bh)
new_esEs0(xy100, xy900, ty_Integer) → new_esEs2(xy100, xy900)
new_esEs1(Pos(Zero), Pos(Zero)) → True
new_esEs17(xy10, xy90, ty_Bool) → new_esEs16(xy10, xy90)
new_esEs9(:%(xy100, xy101), :%(xy900, xy901), dd) → new_asAs0(new_esEs0(xy100, xy900, dd), xy101, xy901, dd)
new_esEs1(Neg(Zero), Neg(Succ(xy9000))) → False
new_esEs1(Neg(Succ(xy1000)), Neg(Zero)) → False
new_flip(xy9, xy10, ba) → new_deleteBy1(xy10, xy9, ba)
new_esEs6(xy10, xy90) → error([])
new_esEs7(xy10, xy90, da, db, dc) → error([])
new_esEs15(xy10, xy90, ce) → error([])
new_esEs17(xy10, xy90, app(app(ty_@2, de), df)) → new_esEs10(xy10, xy90, de, df)
new_esEs1(Pos(Succ(xy1000)), Pos(Succ(xy9000))) → new_primEqNat0(xy1000, xy9000)

The set Q consists of the following terms:

new_asAs0(False, x0, x1, x2)
new_esEs1(Neg(Succ(x0)), Neg(Succ(x1)))
new_esEs16(x0, x1)
new_esEs17(x0, x1, app(app(ty_@2, x2), x3))
new_esEs1(Pos(Succ(x0)), Neg(x1))
new_esEs1(Neg(Succ(x0)), Pos(x1))
new_deleteBy00(x0, x1, x2, True, x3)
new_esEs1(Pos(Zero), Pos(Succ(x0)))
new_asAs0(True, x0, x1, ty_Float)
new_esEs1(Neg(Succ(x0)), Neg(Zero))
new_esEs15(x0, x1, x2)
new_esEs6(x0, x1)
new_asAs0(True, x0, x1, app(ty_[], x2))
new_esEs1(Pos(Zero), Pos(Zero))
new_esEs17(x0, x1, app(ty_[], x2))
new_esEs17(x0, x1, app(ty_Ratio, x2))
new_asAs0(True, x0, x1, app(app(ty_@2, x2), x3))
new_esEs1(Neg(Zero), Neg(Succ(x0)))
new_esEs13(x0, x1)
new_esEs1(Neg(Zero), Neg(Zero))
new_esEs11(x0, x1, x2, x3)
new_esEs9(:%(x0, x1), :%(x2, x3), x4)
new_esEs5(x0, x1)
new_esEs12(x0, x1)
new_esEs2(x0, x1)
new_esEs7(x0, x1, x2, x3, x4)
new_esEs17(x0, x1, ty_Bool)
new_esEs0(x0, x1, ty_Int)
new_esEs17(x0, x1, ty_@0)
new_esEs17(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_asAs0(True, x0, x1, ty_Int)
new_asAs0(True, x0, x1, ty_Ordering)
new_esEs14(x0, x1, x2)
new_asAs0(True, x0, x1, ty_Integer)
new_asAs0(True, x0, x1, app(app(ty_Either, x2), x3))
new_esEs17(x0, x1, ty_Integer)
new_primEqNat0(Zero, Succ(x0))
new_asAs0(True, x0, x1, ty_Double)
new_deleteBy1(x0, :(x1, x2), x3)
new_esEs8(x0, x1)
new_esEs17(x0, x1, app(app(ty_Either, x2), x3))
new_asAs0(True, x0, x1, ty_@0)
new_esEs17(x0, x1, ty_Char)
new_asAs0(True, x0, x1, app(ty_Ratio, x2))
new_esEs17(x0, x1, app(ty_Maybe, x2))
new_esEs10(x0, x1, x2, x3)
new_deleteBy1(x0, [], x1)
new_asAs0(True, x0, x1, ty_Bool)
new_deleteBy00(x0, x1, x2, False, x3)
new_esEs1(Pos(Zero), Neg(Succ(x0)))
new_esEs1(Neg(Zero), Pos(Succ(x0)))
new_esEs1(Pos(Succ(x0)), Pos(Succ(x1)))
new_esEs17(x0, x1, ty_Ordering)
new_asAs0(True, x0, x1, app(ty_Maybe, x2))
new_esEs0(x0, x1, ty_Integer)
new_primEqNat0(Zero, Zero)
new_asAs0(True, x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_primEqNat0(Succ(x0), Zero)
new_flip(x0, x1, x2)
new_esEs17(x0, x1, ty_Double)
new_esEs1(Pos(Succ(x0)), Pos(Zero))
new_esEs17(x0, x1, ty_Int)
new_primEqNat0(Succ(x0), Succ(x1))
new_esEs17(x0, x1, ty_Float)
new_esEs1(Neg(Zero), Pos(Zero))
new_esEs1(Pos(Zero), Neg(Zero))
new_asAs0(True, x0, x1, ty_Char)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(xy80, xy81), xy9, xy10, xy11, ba) → new_psPs(xy81, xy9, xy10, xy11, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: